Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.395
1.
J Enzyme Inhib Med Chem ; 39(1): 2343352, 2024 Dec.
Article En | MEDLINE | ID: mdl-38700244

In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.


Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Sulfonamides , Triazines , Humans , Triazines/pharmacology , Triazines/chemistry , Triazines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Molecular Structure , Cell Proliferation/drug effects , Apoptosis/drug effects , Tumor Cells, Cultured , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Female , Cell Line, Tumor , Spheroids, Cellular/drug effects
2.
Biotechnol J ; 19(5): e2300672, 2024 May.
Article En | MEDLINE | ID: mdl-38719621

The production of recombinant adeno-associated virus (rAAV) for gene therapy applications relies on the use of various host cell lines, with suspension-grown HEK293 cells being the preferred expression system due to their satisfactory rAAV yields in transient transfections. As the field of gene therapy continues to expand, there is a growing demand for efficient rAAV production, which has prompted efforts to optimize HEK293 cell line productivity through engineering. In contrast to other cell lines like CHO cells, the transcriptome of HEK293 cells during rAAV production has remained largely unexplored in terms of identifying molecular components that can enhance yields. In our previous research, we analyzed global regulatory pathways and mRNA expression patterns associated with increased rAAV production in HEK293 cells. Our data revealed substantial variations in the expression patterns between cell lines with low (LP) and high-production (HP) rates. Moving to a deeper layer for a more detailed analysis of inflammation-related transcriptome data, we detected an increased expression of interferon-related genes in low-producing cell lines. Following upon these results, we investigated the use of Ruxolitinib, an interferon pathway inhibitor, during the transient production of rAAV in HEK293 cells as potential media additive to boost rAAV titers. Indeed, we find a two-fold increase in rAAV titers compared to the control when the interferon pathways were inhibited. In essence, this work offers a rational design approach for optimization of HEK293 cell line productivity and potential engineering targets, ultimately paving the way for more cost-efficient and readily available gene therapies for patients.


Dependovirus , Interferons , Signal Transduction , Humans , HEK293 Cells , Dependovirus/genetics , Interferons/metabolism , Interferons/genetics , Nitriles/pharmacology , Pyrimidines/pharmacology , Transfection , Pyrazoles/pharmacology
3.
Nat Commun ; 15(1): 3912, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724509

Direct oral anticoagulants (DOACs) targeting activated factor Xa (FXa) are used to prevent or treat thromboembolic disorders. DOACs reversibly bind to FXa and inhibit its enzymatic activity. However, DOAC treatment carries the risk of anticoagulant-associated bleeding. Currently, only one specific agent, andexanet alfa, is approved to reverse the anticoagulant effects of FXa-targeting DOACs (FXaDOACs) and control life-threatening bleeding. However, because of its mechanism of action, andexanet alfa requires a cumbersome dosing schedule, and its use is associated with the risk of thrombosis. Here, we present the computational design, engineering, and evaluation of FXa-variants that exhibit anticoagulation reversal activity in the presence of FXaDOACs. Our designs demonstrate low DOAC binding affinity, retain FXa-enzymatic activity and reduce the DOAC-associated bleeding by restoring hemostasis in mice treated with apixaban. Importantly, the FXaDOACs reversal agents we designed, unlike andexanet alfa, do not inhibit TFPI, and consequently, may have a safer thrombogenic profile.


Factor Xa Inhibitors , Factor Xa , Hemorrhage , Hemostasis , Pyrazoles , Pyridones , Pyridones/pharmacology , Pyrazoles/pharmacology , Factor Xa/metabolism , Animals , Hemorrhage/drug therapy , Hemorrhage/chemically induced , Humans , Factor Xa Inhibitors/pharmacology , Hemostasis/drug effects , Mice , Pyrazolones , Recombinant Proteins , Male , Anticoagulants/pharmacology , Anticoagulants/adverse effects
4.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38575140

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Drug Inverse Agonism , Piperidines , Female , Mice , Male , Animals , Rimonabant/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Mice, Knockout , Brain , Receptors, Cannabinoid , Receptor, Cannabinoid, CB1/genetics , Dronabinol/pharmacology
5.
J Clin Immunol ; 44(4): 84, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578320

PURPOSE: Patients with STAT1 gain-of-function (GOF) mutations often exhibit autoimmune features. The JAK1/2 inhibitor ruxolitinib can be administered to alleviate autoimmune symptoms; however, it is unclear how immune cells are molecularly changed by ruxolitinib treatment. Then, we aimed to investigate the trnscriptional and epigenetic status of immune cells before and after ruxolitinib treatment in a patient with STAT1 GOF. METHODS: A patient with a heterozygous STAT1 GOF variant (p.Ala267Val), exhibiting autoimmune features, was treated with ruxolitinib, and peripheral blood mononuclear cells (PBMCs) were longitudinally collected. PBMCs were transcriptionally analyzed by single-cell cellular indexing of the transcriptomes and epitopes by sequencing (CITE-seq), and epigenetically analyzed by assay of transposase-accessible chromatin sequencing (ATAC-seq). RESULTS: CITE-seq analysis revealed that before treatment, the patient's PBMCs exhibited aberrantly activated inflammatory features, especially IFN-related features. In particular, monocytes showed high expression levels of a subset of IFN-stimulated genes (ISGs). Ruxolitinib treatment substantially downregulated aberrantly overexpressed ISGs, and improved autoimmune features. However, epigenetic analysis demonstrated that genetic regions of ISGs-e.g., STAT1, IRF1, MX1, and OAS1-were highly accessible even after ruxolitinib treatment. When ruxolitinib was temporarily discontinued, the patient's autoimmune features were aggravated, which is in line with sustained epigenetic abnormality. CONCLUSIONS: In a patient with STAT1 GOF, ruxolitinib treatment improved autoimmune features and downregulated aberrantly overexpressed ISGs, but did not correct epigenetic abnormality of ISGs.


Gain of Function Mutation , Pyrazoles , STAT1 Transcription Factor , Humans , Gain of Function Mutation/genetics , Leukocytes, Mononuclear/metabolism , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , STAT1 Transcription Factor/genetics
6.
PLoS One ; 19(4): e0289902, 2024.
Article En | MEDLINE | ID: mdl-38683834

Mantle cell lymphoma (MCL) has a poor prognosis and high relapse rates despite current therapies, necessitating novel treatment regimens. Inhibition of SRC-3 show effectiveness in vivo and in vitro in other B cell lymphomas. Additionally, previous studies have shown that SRC-3 is highly expressed in the lymph nodes of B cell non-Hodgkin's lymphoma patients, suggesting SRC-3 may play a role in the progression of B cell lymphoma. This study aimed to investigate novel SRC-3 inhibitors, SI-10 and SI-12, in mantle cell lymphoma. The cytotoxic effects of SI-10 and SI-12 were evaluated in vitro and demonstrated dose-dependent cytotoxicity in a panel of MCL cell lines. The in vivo efficacy of SI-10 was confirmed in two ibrutinib-resistant models: an immunocompetent disseminated A20 mouse model of B-cell lymphoma and a human PDX model of MCL. Notably, SI-10 treatment also resulted in a significant extension of survival in vivo with low toxicity in both ibrutinib-resistant murine models. We have investigated SI-10 as a novel anti-lymphoma compound via the inhibition of SRC-3 activity. These findings indicate that targeting SRC-3 should be investigated in combination with current clinical therapeutics as a novel strategy to expand the therapeutic index and to improve lymphoma outcomes.


Adenine/analogs & derivatives , Lymphoma, Mantle-Cell , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/pathology , Animals , Humans , Mice , Cell Line, Tumor , Adenine/pharmacology , Adenine/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Drug Resistance, Neoplasm/drug effects , Xenograft Model Antitumor Assays , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Female
7.
Pestic Biochem Physiol ; 201: 105888, 2024 May.
Article En | MEDLINE | ID: mdl-38685219

Bemisia tabaci is a formidable insect pest worldwide, and it exhibits significant resistance to various insecticides. Dimpropyridaz is a novel pyridazine pyrazolecarboxamide insecticide used against sucking insect pests, but there is little information regarding its metabolic detoxification in arthropods or cross-resistance with other insecticides. In this study, we found that dimpropyridaz shows no cross-resistance with three other popular insecticides, namely abamectin, cyantraniliprole, and flupyradifurone. After treatment of B. tabaci adults with a high dose of dimpropyridaz, higher cytochrome P450 monooxygenase (P450) activity was detected in the survivors, and the expression of the P450 gene CYP6DW4 was highly induced. Cloning and characterization of the full-length amino acid sequence of CYP6DW4 indicated that it contains conserved domains typical of P450 genes, phylogenetic analysis revealed that it was closely related to a B. tabaci protein, CYP6DW3, known to be involved in detoxification of imidacloprid. Silencing of CYP6DW4 by feeding insects with dsRNA significantly increased the susceptibility of B. tabaci to dimpropyridaz. In addition, homology modeling and molecular docking analyses showed the stable binding of dimpropyridaz to CYP6DW4, with binding free energy of -6.65 kcal/mol. Our findings indicate that CYP6DW4 plays an important role in detoxification of dimpropyridaz and possibly promotes development of resistance in B. tabaci.


Cytochrome P-450 Enzyme System , Hemiptera , Insect Proteins , Insecticide Resistance , Insecticides , Ivermectin/analogs & derivatives , Pyrazoles , Pyridazines , ortho-Aminobenzoates , Animals , Hemiptera/drug effects , Hemiptera/genetics , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Pyridazines/pharmacology , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Pyrazoles/pharmacology , Phylogeny , Neonicotinoids/pharmacology , Gene Knockdown Techniques , Molecular Docking Simulation , Amino Acid Sequence , Ivermectin/pharmacology , Ivermectin/toxicity
8.
J Agric Food Chem ; 72(18): 10271-10281, 2024 May 08.
Article En | MEDLINE | ID: mdl-38655868

Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 µM), OfChtII (71.5% inhibitory rate at 50 µM), and OfChi-h (73.9% inhibitory rate at 50 µM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.


Chitinases , Drug Design , Insect Proteins , Insecticides , Juvenile Hormones , Moths , Pyrazoles , Spodoptera , Animals , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Spodoptera/drug effects , Spodoptera/growth & development , Moths/drug effects , Moths/growth & development , Moths/metabolism , Insect Proteins/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Structure-Activity Relationship , Juvenile Hormones/pharmacology , Juvenile Hormones/chemistry , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Chitinases/metabolism , Chitinases/chemistry , Chitinases/antagonists & inhibitors , Receptors, Steroid/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/chemistry , Molecular Docking Simulation , Larva/growth & development , Larva/drug effects , Acetamides/pharmacology , Acetamides/chemistry , Molecular Structure
9.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673725

Human-induced pluripotent stem cells (hiPSCs) offer a promising source for generating dental epithelial (DE) cells. Whereas the existing differentiation protocols were time-consuming and relied heavily on growth factors, herein, we developed a three-step protocol to convert hiPSCs into DE cells in 8 days. In the first phase, hiPSCs were differentiated into non-neural ectoderm using SU5402 (an FGF signaling inhibitor). The second phase involved differentiating non-neural ectoderm into pan-placodal ectoderm and simultaneously inducing the formation of oral ectoderm (OE) using LDN193189 (a BMP signaling inhibitor) and purmorphamine (a SHH signaling activator). In the final phase, OE cells were differentiated into DE through the application of Purmorphamine, XAV939 (a WNT signaling inhibitor), and BMP4. qRT-PCR and immunostaining were performed to examine the expression of lineage-specific markers. ARS staining was performed to evaluate the formation of the mineralization nodule. The expression of PITX2, SP6, and AMBN, the emergence of mineralization nodules, and the enhanced expression of AMBN and AMELX in spheroid culture implied the generation of DE cells. This study delineates the developmental signaling pathways and uses small molecules to streamline the induction of hiPSCs into DE cells. Our findings present a simplified and quicker method for generating DE cells, contributing valuable insights for dental regeneration and dental disease research.


Cell Differentiation , Epithelial Cells , Induced Pluripotent Stem Cells , Morpholines , Purines , Pyrimidines , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Cell Differentiation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/drug effects , Tooth/cytology , Ectoderm/cytology , Ectoderm/metabolism , Cells, Cultured , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/pharmacology , Pyrazoles/pharmacology , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology
10.
In Vitro Cell Dev Biol Anim ; 60(4): 365-373, 2024 Apr.
Article En | MEDLINE | ID: mdl-38564118

The present study was conducted to develop a green process that provides access to the development of Schiff base derivatives of chitosan with the heterocyclic moiety as a novel class of anti-gastric cancer agent. In the present study, we have synthesized these derivatives by reacting various pyrazoles with chitosan using CAN in PEG400. The compounds were synthesized in 20 min in excellent yield by using CAN at 5% in PEG400 at 80°C in the shortest reaction time of 20 min. The PEG400 could be efficiently recycled for the three consecutive runs. The developed compounds were tested for EGFR-TK inhibition using a Kinase-Glo Plus luminescence kinase assay kit where they exhibited significant activity revealing compound 2d as the most potent analog, while other compounds showed mild to moderate inhibitory activity. MTT assay was conducted to determine the effect of the three most potent EGFR inhibitors (2b, 2c, and 2d) on the proliferation of gastric cancer cells (SGC-7901). The results showed compound 2d as the most potent anticancer agent against SGC7901 cells. The effect of compound 2d was also quantified on the apoptosis and cell phase of SGC7901 cells using flow cytometry assay at various concentrations ranging from 0, 10, 20, and 30 µM. Results suggest that compound 2d showed significant inhibition of SGC-7901 by inducing apoptosis and arresting G0/G1 cell phase. The western blot analysis also revealed that compound 2d significantly inhibited the overexpression of EGFR in SGC-7901 cells. The study successfully demonstrated the development of N­pyrazole amino chitosan as a novel class of agent against gastric cancer via inhibition of EGFR.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Chitosan , ErbB Receptors , Polyethylene Glycols , Pyrazoles , Stomach Neoplasms , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Chitosan/chemistry , Chitosan/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Green Chemistry Technology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry
11.
Exp Appl Acarol ; 92(4): 851-870, 2024 May.
Article En | MEDLINE | ID: mdl-38642307

Blood feeding and digestion are vital physiological activities essential for the survival and reproduction of ticks. Chemical acaricides viz., ivermectin, amitraz and fipronil, are known to act on the central nervous system, resulting in the mortality of ticks. The present study is focused on the effect of these acaricides on the midgut and gut enzymes of Rhipicephalus microplus. The ultra-thin sections of midgut of ivermectin-treated ticks showed irregular basal membrane and ruptured digestive vesicles. Amitraz treatment resulted in a notable decrease in digestive cells with pleats in the basal membrane, while fipronil-exposed ticks exhibited reduced digestive cells, loss of cellular integrity, and disintegration of the basal membrane and muscle layer. The gut tissue homogenate of ivermectin and fipronil treated ticks showed a significant reduction of cathepsin D level, 76.54 ± 3.20 µg/mL and 92.67 ± 3.72 µg/mL, respectively, as compared to the control group (150.0 ± 3.80 µg/mL). The leucine aminopeptidase level (4.27 ± 0.08 units/mL) was significantly decreased in the ivermectin treated ticks compared to other treatment groups. The acid phosphatase activity (29.16 ± 0.67 µmole/min/L) was reduced in the ivermectin treated group whereas, increased activity was observed in the fipronil and amitraz treated groups. All the treatment groups revealed increased alkaline phosphatase levels (17.47-26.72 µmole/min/L). The present finding suggests that in addition to the established mechanism of action of the tested acaricides on the nervous system, the alterations in the cellular profile of digestive cells and enzymes possibly affect the blood digestion process and thus the synthesis of vital proteins which are essential for vitellogenesis, and egg production in ticks.


Acaricides , Ivermectin , Pyrazoles , Rhipicephalus , Toluidines , Animals , Rhipicephalus/drug effects , Rhipicephalus/physiology , Ivermectin/pharmacology , Pyrazoles/pharmacology , Toluidines/pharmacology , Acaricides/pharmacology , Female , Epithelium/drug effects , Gastrointestinal Tract/drug effects
12.
Molecules ; 29(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38675621

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Disease Models, Animal , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Janus Kinase 2 , Pyrazoles , Transplantation, Homologous , Animals , Graft vs Host Disease/prevention & control , Graft vs Host Disease/drug therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Mice , Janus Kinase 2/metabolism , Janus Kinase 2/antagonists & inhibitors , Pyrazoles/pharmacology , Purines/pharmacology , Janus Kinase Inhibitors/pharmacology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Sulfonamides/pharmacology , Azetidines/pharmacology , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism
13.
J Agric Food Chem ; 72(17): 9599-9610, 2024 May 01.
Article En | MEDLINE | ID: mdl-38646697

In the search for novel succinate dehydrogenase inhibitor (SDHI) fungicides to control Rhizoctonia solani, thirty-five novel pyrazole-4-carboxamides bearing either an oxime ether or an oxime ester group were designed and prepared based on the strategy of molecular hybridization, and their antifungal activities against five plant pathogenic fungi were also investigated. The results indicated that the majority of the compounds containing oxime ether demonstrated outstanding in vitro antifungal activity against R. solani, and some compounds also displayed pronounced antifungal activities against Sclerotinia sclerotiorum and Botrytis cinerea. Particularly, compound 5e exhibited the most promising antifungal activity against R. solani with an EC50 value of 0.039 µg/mL, which was about 20-fold better than that of boscalid (EC50 = 0.799 µg/mL) and 4-fold more potent than fluxapyroxad (EC50 = 0.131 µg/mL). Moreover, the results of the detached leaf assay showed that compound 5e could suppress the growth of R. solani in rice leaves with significant protective efficacies (86.8%) at 100 µg/mL, superior to boscalid (68.1%) and fluxapyroxad (80.6%), indicating promising application prospects. In addition, the succinate dehydrogenase (SDH) enzymatic inhibition assay revealed that compound 5e generated remarkable SDH inhibition (IC50 = 2.04 µM), which was obviously more potent than those of boscalid (IC50 = 7.92 µM) and fluxapyroxad (IC50 = 6.15 µM). Furthermore, SEM analysis showed that compound 5e caused a remarkable disruption to the characteristic structure and morphology of R. solani hyphae, resulting in significant damage. The molecular docking analysis demonstrated that compound 5e could fit into the identical binding pocket of SDH through hydrogen bond interactions as well as fluxapyroxad, indicating that they had a similar antifungal mechanism. The density functional theory and electrostatic potential calculations provided useful information regarding electron distribution and electron transfer, which contributed to understanding the structural features and antifungal mechanism of the lead compound. These findings suggested that compound 5e could be a promising candidate for SDHI fungicides to control R. solani, warranting further investigation.


Botrytis , Fungicides, Industrial , Oximes , Plant Diseases , Pyrazoles , Rhizoctonia , Succinate Dehydrogenase , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Pyrazoles/pharmacology , Pyrazoles/chemistry , Structure-Activity Relationship , Plant Diseases/microbiology , Plant Diseases/prevention & control , Oximes/chemistry , Oximes/pharmacology , Botrytis/drug effects , Botrytis/growth & development , Molecular Docking Simulation , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ascomycota/drug effects , Ascomycota/chemistry , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
14.
J Med Chem ; 67(9): 7312-7329, 2024 May 09.
Article En | MEDLINE | ID: mdl-38680035

N-myristoyltransferase (NMT) is a promising antimalarial drug target. Despite biochemical similarities between Plasmodium vivax and human NMTs, our recent research demonstrated that high selectivity is achievable. Herein, we report PvNMT-inhibiting compounds aimed at identifying novel mechanisms of selectivity. Various functional groups are appended to a pyrazole moiety in the inhibitor to target a pocket formed beneath the peptide binding cleft. The inhibitor core group polarity, lipophilicity, and size are also varied to probe the water structure near a channel. Selectivity index values range from 0.8 to 125.3. Cocrystal structures of two selective compounds, determined at 1.97 and 2.43 Å, show that extensions bind the targeted pocket but with different stabilities. A bulky naphthalene moiety introduced into the core binds next to instead of displacing protein-bound waters, causing a shift in the inhibitor position and expanding the binding site. Our structure-activity data provide a conceptual foundation for guiding future inhibitor optimizations.


Acyltransferases , Antimalarials , Enzyme Inhibitors , Plasmodium vivax , Pyrazoles , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Plasmodium vivax/enzymology , Plasmodium vivax/drug effects , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Acyltransferases/chemistry , Structure-Activity Relationship , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Crystallography, X-Ray , Humans , Models, Molecular , Binding Sites
15.
J Med Chem ; 67(9): 7245-7259, 2024 May 09.
Article En | MEDLINE | ID: mdl-38635563

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.


Agammaglobulinaemia Tyrosine Kinase , Pyrophosphatases , Humans , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Structure-Activity Relationship , Crystallography, X-Ray , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/chemical synthesis , Drug Discovery , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Adenine/metabolism , Models, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
16.
Int Immunopharmacol ; 132: 111903, 2024 May 10.
Article En | MEDLINE | ID: mdl-38579561

Bruton's Tyrosine kinase (BTK) plays a pivotal role as the key mediator in B cell signaling. Recent research has revealed that it is also expressed in cells critical to asthma development, such as T cells, and eosinophils. This study aims to investigate the potential of BTK inhibitor in eosinophilic asthma mouse model. BALB/c mice were sensitized with ovalbumin (OVA) via intraperitoneal injections and followed by OVA nebulizations. The mice were treated with 250 µg/ml or 500 µg/ml of ibrutinib before the second intraperitoneal injection and the first nebulization. Two days after the last OVA challenge, airway hyperresponsiveness (AHR) was assessed with methacholine, and differential cell count in bronchoalveolar lavage fluid (BALF) was performed. The cytokines were measured in BALF, and serum OVA-specific IgE and IgG antibody levels were evaluated by ELISA. The inhibitory effect of ibrutinib was also evaluated in splenic mononuclear cells, mast cells, eosinophils, and T cells in vitro. Treatment with ibrutinib significantly attenuated AHR and airway inflammation, compared to the OVA-induced positive control. The treatment also reduced IL-4, IL-5, IL-13 and IFN-γ cytokine levels and suppressed OVA-specific IgE and IgG production compared to the OVA-induced positive control. Additionally, ibrutinib decreased beta-hexosaminidase release from mast cells, type 2 cytokine productions from mononuclear cells and T cells, and eosinophilic activation markers in vitro. The results of this study suggest that ibrutinib treatment could exert anti-allergic effects by inactivating B cells and other BTK-expressing cells. Further studies are needed to investigate the potential therapeutic effect of ibrutinib on allergic diseases.


Adenine , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Asthma , Cytokines , Disease Models, Animal , Eosinophils , Immunoglobulin E , Mice, Inbred BALB C , Ovalbumin , Piperidines , Protein Kinase Inhibitors , Animals , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Asthma/drug therapy , Asthma/immunology , Piperidines/therapeutic use , Piperidines/pharmacology , Ovalbumin/immunology , Adenine/therapeutic use , Adenine/pharmacology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Cytokines/metabolism , Eosinophils/immunology , Eosinophils/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mice , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Female , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Immunoglobulin G/blood , Anti-Asthmatic Agents/therapeutic use , Anti-Asthmatic Agents/pharmacology , Cells, Cultured , Humans , Mast Cells/drug effects , Mast Cells/immunology
17.
Front Immunol ; 15: 1340908, 2024.
Article En | MEDLINE | ID: mdl-38650933

Background: Eltrombopag has demonstrated efficacy in treating low platelet (PLT) levels, but it remains unclear whether eltrombopag can promote PLT engraftment after hematopoietic stem cell transplantation (HSCT). Methods: Forty-one HSCT patients received eltrombopag 50 mg/d from +1 day until PLT >50 × 109/L or 1 month after HSCT. Fifty-one patients in the same period received thrombopoietin (TPO) to promote PLT graft after HSCT and served as a control group. Results: A total of 51 patients who applied TPO during the same period were treated as a control. In the eltrombopag group, the median time to white blood cells (WBC) graft was 12 days (range, 10-17 days) and the PLT graft was 15 days (range, 10-30 days), whereas for the patients in the TPO group, the median time to WBC and PLT graft was 12 days (range, 9-23 days) and 15.5 days (range, 9-41 days), respectively. In the first month after HSCT, the median WBC count in the eltrombopag group was 4.41 × 109/L (range, 0.87-40.01 × 109/L) and the median PLT was 89x109/L (range, 30-401 × 109/L); the median WBC and PLT \counts in the TPO group were 4.65 × 109/L (range, 0.99-23.63 × 109/L) and 86 × 109/L (range, 5-512 × 109/L), respectively. Patients in the TPO or eltrombopag group did not experience serious side effects after drug administration, and the difference in side effects on liver and kidney function between the two groups was not statistically significant. Conclusion: Eltrombopag is safe and similarly promotes platelet engraftment to thrombopoietin after allogeneic HSCT.


Benzoates , Hematopoietic Stem Cell Transplantation , Hydrazines , Pyrazoles , Thrombopoietin , Female , Humans , Male , Benzoates/therapeutic use , Blood Platelets/metabolism , Blood Platelets/drug effects , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Hydrazines/therapeutic use , Platelet Count , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Thrombopoietin/therapeutic use , Transplantation, Homologous
18.
Acta Physiol (Oxf) ; 240(5): e14128, 2024 May.
Article En | MEDLINE | ID: mdl-38551103

AIM: Mechanical ventilation (MV) results in diminished diaphragm size and strength, termed ventilator-induced diaphragm dysfunction (VIDD). VID increases dependence, prolongs weaning, and increases discharge mortality rates. The Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathway is implicated in VIDD, upregulated following MV. JAK/STAT inhibition alleviates chronic muscle wasting conditions. This study aimed to explore the therapeutic potential of Ruxolitinib, an FDA approved JAK1/2 inhibitor (JI) for the treatment of VIDD. METHODS: Rats were subjected to 5 days controlled MV (CMV) with and without daily Ruxolitinib gavage. Muscle fiber size and function were assessed. RNAseq, mitochondrial morphology, respirometry, and mass spectrometry were determined. RESULTS: CMV significantly reduced diaphragm size and specific force by 45% (p < 0.01), associated with a two-fold P-STAT3 upregulation (p < 0.001). CMV disrupted mitochondrial content and reduced the oxygen consumption rate (p < 0.01). Expression of the motor protein myosin was unaffected, however CMV alters myosin function via post-translational modifications (PTMs). Daily administration of JI increased animal survival (40% vs. 87%; p < 0.05), restricted P-STAT3 (p < 0.001), and preserved diaphragm size and specific force. JI was associated with preserved mitochondrial content and respiratory function (p < 0.01), and the reversal or augmentation of myosin deamidation PTMs of the rod and head region. CONCLUSION: JI preserved diaphragm function, leading to increased survival in an experimental model of VIDD. Functional enhancement was associated with maintenance of mitochondrial content and respiration and the reversal of ventilator-induced PTMs of myosin. These results demonstrate the potential of repurposing Ruxolitinib for treatment of VIDD.


Diaphragm , Nitriles , Pyrazoles , Pyrimidines , Respiration, Artificial , Animals , Diaphragm/drug effects , Diaphragm/metabolism , Diaphragm/physiopathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Nitriles/pharmacology , Rats , Respiration, Artificial/adverse effects , Male , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Rats, Sprague-Dawley
19.
Int Immunopharmacol ; 131: 111859, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38492342

Epilepsy is a chronic neurological disease characterized by a persistent susceptibility to seizures. Pharmaco-resistant epilepsies, impacting around 30 % of patients, highlight the urgent need for improved treatments. Neuroinflammation, prevalent in epileptogenic brain regions, is a key player in epilepsy, prompting the search for new mechanistic therapies. Hence, in this study, we explored the anti-inflammatory potential of pyrazole benzenesulfonamide derivative (T1) against pentylenetetrazole (PTZ) induced epilepsy-like conditions in in-vivo zebrafish model. The results from the survival assay showed 79.97 ± 6.65 % at 150 µM of T1 compared to PTZ-group. The results from reactive oxygen species (ROS), apoptosis and histology analysis showed that T1 significantly reduces cellular damage due to oxidative stress in PTZ-exposed zebrafish. The gene expression analysis and neutral red assay results demonstrated a notable reduction in the inflammatory response in zebrafish pre-treated with T1. Subsequently, the open field test unveiled the anti-convulsant activity of T1, particularly at a concentration of 150 µM. Moreover, both RT-PCR and immunohistochemistry findings indicated a concentration-dependent potential of T1, which inhibited COX-2 in zebrafish exposed to PTZ. In summary, T1 protected zebrafish against PTZ-induced neuronal damage, and behavioural changes by mitigating the inflammatory response through the inhibition of COX-2.


Epilepsy , Pentylenetetrazole , Animals , Humans , Zebrafish , Benzenesulfonamides , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/metabolism , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Disease Models, Animal
20.
J Agric Food Chem ; 72(14): 7727-7734, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38530940

To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.


Cyclohexanones , Herbicides , Pyridines , Sulfonylurea Compounds , Herbicides/pharmacology , Herbicides/chemistry , Structure-Activity Relationship , Molecular Docking Simulation , Skeleton , Pyrazoles/pharmacology , Pyrazoles/chemistry , Thiourea
...